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• Involves a number of steps
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How is a Machine Learning Algorithm Made?

• Involves a number of steps

• Each step represents a choice of one method from a large library of options

• Each choice has a number of parameters that affect the performance

• Overall this is a time consuming, iterative, and labor intensive process
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Evolutionary Multi-objective Algorithm Design Engine

• Synthesizes new algorithms from existing building blocks

• Evaluates hundreds of thousands of algorithms in the time a data scientist could try 
a dozen

• Simultaneously optimizes against multiple performance criteria

• Initialized by the state of the art
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Scoring the Algorithms
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Scoring the Algorithms
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s Three of these algorithms 
form an optimal set 
because they are non-
dominated
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Composite Algorithms

EMADE applies concepts from biology such as 
“survival of the fittest” and “DNA” to the world of 
software to evolve algorithms tailored to a 
specific dataset and problem

“Generation 1”

Metric 2

Metric 1

Evolutionary Multi-objective Algorithm Design Engine
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EMADE applies concepts from biology such as 
“survival of the fittest” and “DNA” to the world of 
software to evolve algorithms tailored to a 
specific dataset and problem

Crossover

“Generation 1”

Metric 2

Metric 1

Evolutionary Multi-objective Algorithm Design Engine
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EMADE applies concepts from biology such as 
“survival of the fittest” and “DNA” to the world of 
software to evolve algorithms tailored to a 
specific dataset and problem

Child Algorithm

Child algorithm now 
forms Pareto front

“Generation 1 & 2”

Metric 2

Metric 1

Evolutionary Multi-objective Algorithm Design Engine
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Demonstration of Capability: 
Bathymetric LIDAR
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D

Task:  Estimate the optical path 
length (OPL) in meters from the 
sea surface to the sea floor
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Interest Point Method [1]

• Industry standard for optical path length estimation

• Look for inflection points preceding peaks to compute optical path length in water
• Peaks round out with reflections, noise can influence where peak is detected

• Three Steps
1. Smooth LIDAR waveform
2. Detect Peaks
3. Perform informed search to find inflection points
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Smoothing the Waveform

Uses a Savitzky-Golay polynomial filter
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Peak Detector

Finds peaks based on relative strength of nearby points
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Informed Search

Finds inflection points preceding the peaks using zero crossings
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• Used simulator developed at GTRI 
EOSL as part of Dr. Domenic Carr’s
Dissertation [2]

• Captured variations in system and 
environment

Creating a Robust Data Set
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Designing a Set Of Optimizations
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Optimization 1

Optimization 3

Optimization 2
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Designing a Set Of Optimizations

Interest Point 
Algorithm

If two peaks 
returned

Algorithm from 
Optimization 1

Else Algorithm from 
Optimization 2

If classification 
as detectable

Algorithm from 
Optimization 3

Else No detection
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We will focus on Optimization 1
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Seeding EMADE – Interest Point Detection
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Best human derived 
algorithms are implemented 
to seed EMADE 
evolutionary process 
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Validated after evolution:

• Over prediction from 0.348 
meters to 0.301 meters  
(13.5% Improvement)

• Under prediction from 0.881 
meters to 0.281 meters  
(68.1% Improvement)

Results

24

Evolutionary process 
creates solutions that out 
perform existing human 
derived algorithms
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57 Generations represents ~17,000 
experiments completed

EMADE Evolved Individuals
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Test: (0.2783, 0.2628)
Val: (0.3007, 0.2807)

Test: (0.2800, 0.2616)
Val: (0.3003, 0.2828)

Bloat: these 
primitives have 

no effect
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EMADE Evolved Individuals
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Test: (0.2783, 0.2628)
Val: (0.3007, 0.2807)

Test: (0.2800, 0.2616)
Val: (0.3003, 0.2828)

57 Generations represents ~17,000 
experiments completed

X length Y length Iterations Binary threshold
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Single Learner

Integral

Erosion Ellipse

Data 4 85 3 True

Stream to 
Features

Orthogonal 
Matching Pursuit

Understanding the Algorithm
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255*(~300-
~130)
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Comparison on Variance of Estimate vs Depth
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• In total 14,357 individuals evaluated on the 
small dataset
- Compute time averaged 64.5 seconds

• Only 2,455 matured to the large dataset
- Compute time averaged 1,359.93 seconds

• Skipped 11,902 evaluations on the large 
dataset
- Saved over 4400 CPU hours
- EMADE ran for only 470 CPU hours

• Two evaluations on each of 2,455 individuals
- Spent approximately 44 hours total on extra step of 

evaluation on small dataset

14,357 
Individuals

• Small dataset 
evaluations
• 150 

waveforms

2,455 
Individuals

• Large dataset 
evaluations
• 1783 

waveforms

Tiered Datasets – Savings on Two Tiers
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Conclusions

• EMADE improved on the state of the art by discovering a simpler technique.

• The optimal algorithms for time-domain signals relied on an OpenCV image-processing function.

• Scalable architecture allowed the 470 CPU-hours to be completed in little over a day on a cluster 
of computers.

• Full results for Optimization 2 and 3 are detailed in the paper.
- Optimization 2 achieved prediction of bottom visibility with 88.1% accuracy, a 46% improvement over interest 

point alone.
- Optimization 3 achieved errors of 0.38 meters over-prediction and 0.366 meters under-prediction where the 

interest point method fails.

• Automated algorithm design combines the best of human knowledge with the power of evolution 
to rapidly respond to new challenges.
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Questions?
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